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Abstract
We investigate the components determining bigness of the cotangent bundle Ω1

X of smooth
models X in the birational class Y of an orbifold surface of general type Y , with a focus on
the contribution given by the singularities of Y . A criterion for bigness of Ω1

X is given involving
only topological and singularity data on Y . We single out a special case, the Canonical Model
Singularities (CMS) criterion, when Y is the canonical model of Y. We study the singularity
invariants appearing in the criterion and determine them for An singularities. Knowledge of
these invariants for An singularities allows one to evaluate the (c2, c2

1)−geographical range of
the CMS criterion and compare it to other criteria. We obtain new examples of resolutions X
of hypersurfaces Y ⊂ P3 (with lower degrees) and of cyclic covers Y of P2 branched along line
arrangements with Ω1

X big.
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1 Introduction
A smooth projective surface X has big cotangent bundle Ω1

X if

h0
Ω(X) := lim

m→∞

h0(X,SmΩ1
X)

m3 ̸= 0,

i.e., the symmetric pluri-genera PS
m(X) := h0(X,SmΩ1

X) has the maximal growth order possible
with respect to m for dimX = 2. The symmetric plurigenera are birational invariants and hence the
cotangent bundle being big is a birational property (among smooth representatives).

Bigness of Ω1
X is a manifestation of positivity properties of Ω1

X and it implies that the canonical
line bundle ∧2Ω1

X is big, i.e., X is a surface of general type, see for example [1]. A motivation to
study bigness of the cotangent bundle comes from the connection between positivity properties of
the cotangent bundle and the hyperbolicity properties of projective varieties. A de facto connection
is that Ω1

X ample implies X is Kobayashi hyperbolic [2]. A conjectural connection is the Green-
Griffiths-Lang (GGL) conjecture stating that: A projective variety X of general type has a proper
subvariety Z ⊂ X such that all entire curves of X are contained in Z. More pertinent to this work
– a consequence of the works of Bogomolov [3] and McQuillan [4] – is that a surface of general type
with big Ω1

X satisfies the GGL conjecture. For surveys on this topic see for example [5] and [6].
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Let X be a smooth surface of general type. Riemann-Roch and Bogomolov’s vanishing,
h2(X,SmΩ1

X) = 0, m > 2 (a consequence of the semi-stability properties of the tangent bundle TX

for minimal surfaces of general type [7] and [8], see also Lemma 1), give that for any smooth surface
of general type X:

h0
Ω(X) = h1

Ω(X) + 1
3!s2(X),

where s2(X) = c2
1(X) − c2(X) is the 2nd Segre number and h1

Ω(X) := limm→∞ h1(X,SmΩ1
X)/m3

(this limit exists, see section 3.1). In [7], Bogomolov concluded that s2(X) > 0 implies Ω1
X is big

and showed how the bigness of Ω1
X implies the boundness of the family of curves of fixed geometric

genus in X. While s2(X) is easy to get a hold on, the invariant h1
Ω(X) is difficult to determine and

depends on the complex structure, as it can jump under deformation, this was described in [9].

When X is a resolution of an orbifold surface Y (normal surface with only quotient singularities)
of general type, we derive a lower bound on h1

Ω(X) using singularity data of Y , and obtain a criterion
for bigness of Ω1

X . Each singularity gives an independent contribution to h1
Ω(X). Given a normal

surface singularity y, set:

h1
Ω(y) := lim inf

m→∞

h0(Uy, R
1σ∗S

mΩ1
Ũy

)
m3 ,

where Uy is a neighborhood germ of the surface singularity y and σ : Ũy → Uy its minimal resolution.
We call h1

Ω(y) the 1-st cohomological Ω-asymptotics of the surface singularity y.

Theorem 1 (QS-Bigness Criterion) Let X be a surface of general type which is the minimal resolution of a
surface Y with only quotient singularities. Then Ω1

X is big if:∑
y∈Sing(Y )

h1
Ω(y) + s2(X)

3! > 0,

The approach taken in this paper relies on the theory developed by Wahl [10], Blache [11] and
Langer [12] for the Chern classes (local and global) and the asymptotic Riemann-Roch formulas for
orbifold vector bundles. We also require the use of the results on the semi-stability of the tangent
sheaf of singular varieties due to Guenancia and Kobayashi (see [13] theorem A and [14]) to derive the
vanishing H2(Y, ŜmΩ1

Y ) = 0, Lemma 1, where ŜmΩ1
Y = [σ∗(SmΩ1

X ])∨∨ is the orbifold m-symmetric
power of Ω1

Y , with X and Y as in the theorem.

An equivalence class X of normal projective surfaces under birational equivalence relation will
be referred to as a surface birational class. The cotangent bundle Ω1

X is big if any (and hence all) of
the smooth models X of X has Ω1

X big. A surface birational class of general type X has two special
models, Xcan and Xmin respectively the canonical and the minimal models.

The Chern numbers of X will the Chern numbers of its minimal model, as an illustration,
s2(X ) := s2(Xmin). We call the localized component (at the singularities) of h1

Ω(X ) := h1
Ω(Xmin):

Lh1
Ω(X ) =

∑
x∈Sing(Xcan)

h1
Ω(x)

There is a natural application of the QS-Bigness Criterion towards bigness of Ω1
X .

Corollary 1 (CMS-bigness criterion) Let X be a birational class of surfaces of general type. Then the
cotangent bundle Ω1

X is big if

Lh1
Ω(X ) + s2(X )

3! > 0
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To ascertain the scope of the CMS-criterion we need a hold on Lh1
Ω(X ). The starting point is

to investigate 1-st cohomological Ω-asymptotics, h1
Ω(y), for canonical singularities. These invariants

were previously unknown with the exception of h1
Ω(A1), when y is an A1 singularity [15]. We note

also that in one of the authors thesis [16], using an earlier version of the method appearing in this
paper, the cases An, n = 2, 3, 4, 8, 12 and 16 were treated. In this work, we give a lower bound for
h1

Ω(y) involving relative local Chern numbers when y is a canonical singularity, and in Part II we
determine a closed formula for h1

Ω(An) for all An singularities.

Our approach to find h1
Ω(y) uses the singularity invariants χ(y,m), χorb(y,m) and µ(y,m) appear-

ing as correction terms in the relations between the Euler characteristics (with X and Y as in
Theorem 1):

χ(Y, ŜmΩ1
Y ) = χ(X,SmΩ1

X) +
∑

y∈Sing(Y)

χ(x,m)

χ(Y, ŜmΩ1
Y ) = χorb(Y, ŜmΩ1

Y ) +
∑

y∈Sing(Y)

µ(y,m)

χ(X,SmΩ1
X) = χorb(Y, ŜmΩ1

Y ) +
∑

y∈Sing(Y)

χorb(y,m)

and the resulting relation:

χ(y,m) := ℏ0(y,m) + h1(y,m) = µ(y,m) − χorb(y,m), (+)

where h1(y,m) := h0(Uy, R
1σ∗S

mΩ1
Uy

) and ℏ0(y,m) = dim[H0(Ũy \ E,SmΩ1
Ũy

)/H0(Ũy, S
mΩ1

Ũy
)],

where (Ũy, E) is the minimal resolution of the neighborhood germ (Uy, y).

The following key relation follows from the asymptotics of χorb(y,m) and µ(y,m) [10]:

lim
m→∞

ℏ0(y,m) + h1(y,m)
m3 = c2(y) − c2

1(y)
3!

where c2(y), c2
1(y) ∈ Q are the relative local Chern numbers of y. This relation tell us that h1

Ω(y)
can be derived from the asymptotics of ℏ0(y,m).

In the case of canonical singularities, local cohomology and the work of Karras [17] (see also [18])
on the cohomology with compact supports on neighborhoods of exceptional sets allows us to derive
the following lower bounds:

Theorem 2 Let (Y, y) be the neighborhood germ of a canonical surface singularity.

1. For all m ≥ 0, ℏ0(y,m) ≤ h1(y,m)
2. h1

Ω(y) ≥ c2(y)
2·3!

The comparison h1
Ω(y) ≥ c2(y)

2·3! is pertinent because it shows that CMS-criterion is stronger that
the bigness criterion appearing in [19]. For An singularities though, we know both sides and have

that ψ(n) := h1
Ω(An)
c2(An)

2·3!

is increasing, ψ(1) = 32
27 and limm→∞ ψ(n) = 2, see Corollary 3.

In the case of An singularities we can determine h1
Ω(An). In Theorem 1(II) (Theorem 1 of Part

II), we determine ℏ0(An,m). We show that for each n and m, ℏ0(An,m) is given by a weighted
lattice sum over a polygon Pn(m),

ℏ0(An,m) =
∑

x=(x1,x2)∈Pn(m)∩Z2

x1+(n+1)x2≡m mod 2

hn,m(x)

3



and if we fix n, then ℏ0(An,m) is a quasi-polynomial in m (the coefficients in powers of m are
periodic functions of m) of degree 3 with constant leading coefficient ℏ0

Ω(An) for which we present a
closed formula in n. We then obtain in Theorem 2(II) the formula:

h1
Ω(An) = n5 + 19n4 + 83n3 + 137n2 + 80n

6(n+ 1)2(n+ 2)2 − 4
3

n∑
k=1

1
k2 ,

To investigate the strength of the CMS criterion it is instructive to compare it to the criterion
by Roulleau and Rousseau in [19], from now on denoted by the RR-criterion. The RR-criterion for
bigness of Ω1

X uses the “stacky” framework of orbifod structures attached to Xcan inspired by the
work of Campana [20], but it can be reformulated using our framework as:

∑
x∈Sing(Xcan)

c2(x)
2 · 3! + s2(X )

3! > 0 =⇒ Ω1
X is big

The distinction between the two criteria lies in how each assesses the impact of each singularity
in h1

Ω(X ). First, we remark that Theorem 2(b) implies that the CMS-criterion always holds if the
RR-criterion holds. But to comprehend the full strength of the CMS-criterion the formula for h1

Ω(An)
is required. This formula shows that the ratio between the two criteria singularity contributions,
h1

Ω(An) over c2(An)
2·3! , grows with n, with 32/27 for n = 1 and approaching 2 as n → ∞. The striking

impact of this difference is seen in the following paragraphs.

Let GT be the set of all birational classes of surfaces of general type and CGT be the set of
Chern number pairs CGT := {(c2(X ), c2

1(X ))|X ∈ GT}, where ci(X ) := ci(Xmin). Given a criterion
C define the excluded range of C by:

ER(C) = {(a, b) ∈ CGT |∄X ∈ GT with (c2(X ), c2
1(X )) = (a, b) satisfying C}

The reason for a pair of Chern numbers (a, b) to belong to ER(CMS) or to ER(RR) must come
from bounds on the possible singularities of the canonical model Xcan of X with (c2(X ), c2

1(X )) =
(a, b). The are two such general bounds:

M-bound (Miyaoka [21]):
∑

x∈Sing(Xcan)

c2(x) ≤ c2(X ) − 1
3c

2
1(X ) (*)

H-bound (Standard Hodge theory): ρ(−2)(X ) ≤ 1
6(5c2(X ) − c2

1(X )) + b1(X ) − 1, (**)

where ρ(−2)(X ) := # of (-2)-curves on Xmin and b1(X ) := b1(Xmin).

The M-bound explicitly bounds the singularity contribution on the RR-criterion, making its
impact on ER(RR) straightforward: ([19]) (a, b) ∈ CGT must belong to ER(RR) if b

a ≤ 3
5 .

On the other hand, the restriction imposed by the M-bound on the CMS-criterion concerning
the excluded range is minor. The only pairs in CGT that the M-bound forces to be in ER(CMS)
is the finite collction with c2

1 = 1, 2. This contrasts with the infinite collection pairs forced to belong
to ER(RR) by the M-bound, as mentioned in the paragraph above.

The H-bound is more restrictive than the M-bound for the CMS-criterion when considering
birational classes X with b1(X ) = 0. The singularity contribution in the CMS-criterion is the highest
if all the (−2)-curves allowed on Xmin come from a single singularity. The bound on ρ(−2)(X ) given
by the H-bound is stronger than the one implied by the M-bound when c2

1 < c2, if b1(X ) = 0, see
Section 2.7.
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Set:

α
Big

= inf
{
c2

1(X )
c2(X ) | X ∈ GT with Ω1

X big
}

The impact, described above, of M-bound on the ER(RR) shows that the RR-criterion can not
show α

Big
< 3/5.

Taking into account both bounds and considering canonical models with only singularities of
type A, we obtain: the H-bound and M-bound together can only possibly force (a, b) ∈ ER(CMS) if
b ≤ 1

5a. Hence the CMS-criterion implies:

Theorem 3 (CMS-criterion range bounds) If a birational class X of surfaces of general type has its canonical
model with only singularities of type A, then X can not satisfy the CMS-criterion if c2

1 ≤ c2
5 holds.

Moreover, the CMS-criterion implies that the Miyaoka (*) and the Hodge theoretical (**) bounds cannot
rule out αBig to be as low as 1/5.

It is well known that smooth hypersurfaces Hd ⊂ P3 of degree d ≥ 1 have no symmetric
differentials [22], on the other hand in [9] it was shown that if d ≫ 0 there are surfaces X deforma-
tion equivalent to Hd with Ω1

X big. An application of the CMS-criterion gives the following result
concerning:

Problem: what is dmin = min{d|∃X deformation of Hd with Ω1
X big}?

Theorem 4 For d ≥ 8 there are surfaces X deformation equivalent to smooth hypersurfaces Hd ⊂ P3 of
degree d with big cotangent bundle.

It follows that dmin ≤ 8 and αBig ≤ c2
1

c2
(H8) = 8

19 (< 3
5 ). The surfaces X appearing in the

theorem can be obtained as the minimal resolution of hypersurfaces Y ⊂ P3 of degree d with only
Ad−1 singularities, where Y are the cyclic covers of degree d of P2 branched along d lines in general
position. No known obstruction exists to prevent the CMS-criterion from achieving dmin = 6, while it
follows from Theorem 3 that dmin = 5 can not be achieved with resolutions of hypersurfaces Y ⊂ P3

with only singularities of type A.

Another application concerns the minimal resolutions of cyclic covers of P2 branched along line
arrangements in general position:

Theorem 5 The CMS-criterion guarantees bigness of the cotangent bundle and hence the GGL-conjecture to
hold for all the minimal resolutions Yn,d of general type that are cyclic covers of P2 of degree n and branched
on d = νn lines in general position, with the exception of list in the table below.

Table 1: The only pairs (n, ν) for
which Ω1

Yn,νn
is not big

ν 1 2, 3 4 ≤ ν ≤ 7 ν ≥ 8
n 5, 6, 7 3, 4 2, 3 2

We also address the question about the existence of symmetric differentials of a given degree m
on deformations of smooth hypersurfaces Hd ⊂ P3 of degree d ≥ 5. To this end, we need the formula
for ℏ0(An,m) obtained in Theorem 1(II) and the formula for local Euler characteristic χ(An,m).
The latter follows easily from the singularity invariant µ(An,m) using (+).
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As mentioned earlier, we have χ(Y, ŜmΩ1
Y ) = χorb(Y, ŜmΩ1

Y ) +
∑

y∈Sing(Y) µ(y,m). We find the
µ(y,m) invariants in the case of An singularities to be:

Theorem 6 The µ(An, m) are given by the formulas, where r ≡ m (mod n + 1) and 0 ≤ r ≤ n:

µ(An, m) =

{ (−1)m

4 ⌊m + 1
n + 1 ⌋ + αn(r) n odd

αn(r) n even,

with αn(r) given by

αn(r) =

 r + 1
12(n + 1)

(
2r(r + 2) + n(n + 2)

)
− 2r2 + 4r + 1 − (−1)r

8 r ̸= n

0 r = n.

In particular, for fixed n, µ(An, m) as function of m is bounded if n is even and |µ(An, m)| is bounded by a
linear function if n is odd.

2 Orbifold symmetric powers of Ω1
X, surface quotient

singularities invariants and their asymptotics

2.1 Quotient singularities and orbifold vector bundles on surfaces
In this work, a normal projective surface X is called an orbifold surface if the singularities of X are
quotient (log terminal) singularities. In the literature an orbifold surface is also called a Q-surface
(e.g. [23]) or a normal V -surface (e.g. [11]).

The germ of an isolated quotient surface singularity (X,x) is biholomorphic to a quotient
(C2, 0)/Gx, with subgroup Gx ⊂ GL2(C) finite and small; Gx is the local fundamental group. Canon-
ical surface singularities are the quotient singularities with Gx ⊂ SL2(C), and their classification is
the same as that of simply connected simple Lie groups (hence the ADE nomenclature).

2.1.1 Resolution and smoothing pairs
Associated to a germ of an isolated quotient surface singularity (X,x), we have the resolution/s-
moothing pair:

(C2, 0)

(X̃, E) (X,x)

π

σ
(1)

with π : (C2, 0) → (X,x), the quotient map by the local fundamental group, called the local
smoothing of (X,x) and σ : (X̃, E) → (X,x) a good resolution of (X,x) where (X̃, E) is the
germ of a neighborhood of the exceptional locus E with E consisting of smooth curves intersecting
transversally.

2.1.2 Orbifold vector bundles and reflexive sheaves
The sub-class of coherent sheaves on orbifold surfaces relevant to our goals consists of orbifold vector
bundles (also called Q-vector bundles or locally V-free sheaves). In the surface case, this sub-class
coincides with the class of reflexive sheaves (cf. Section 2 of either [23] or[11]).

A reflexive coherent sheaf F on an orbifold X is called an orbifold vector bundle if each point
x ∈ X has a neighborhood germ (X,x) and a smoothing π : (Cn, 0) → (X,x) with a locally free
sheaf F ′ such that

F|(X,x) = (πGx
∗ )F ′,
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where (πGx
∗ )F ′ is the maximal subsheaf of π∗F ′ on which Gx acts trivially. In dimension 2, this

condition always holds by setting F ′ = (π∗F|(X,x))∨∨.
Associated to a reflexive sheaf F on the quotient surface germ (X,x) there are also locally free

sheaves F̃ on (X̃, E), which are not uniquely determined, satisfying F ∼= (σ∗F̃)∨∨.

2.1.3 Orbifold bundles associated to the cotangent bundle
Let X be an orbifold surface, σ : X̃ → X a good resolution of X and i : Xreg ↪→ X the natural
inclusion of the regular part of X. We are interested in the following orbifold vector bundles:

i) the cotangent and tangent bundles of X, which are respectively the reflexive sheaves Ω1
X :=

i∗(Ω1
Xreg

) and its dual TX := i∗(TXreg).
ii) the canonical bundle O(KX) (∼= (

∧2 Ω1
X)∨∨).

iii) the orbifold m-symmetric powers of the cotangent bundle

ŜmΩ1
X := (SmΩ1

X)∨∨ ∼= i∗(SmΩ1
Xreg

) ∼= (σ∗S
mΩ1

X̃
)∨∨.

Note that ŜmΩ1
X is not necessarily isomorphic to SmΩ1

X .

2.2 Local holomorphic Euler characteristic
Let X be a compact normal orbifold complex surface, X̃ σ−→ X be a good resolution, F̃ and F sheaves
such that F̃ is locally free on X̃, and F = (σ∗F̃)∨∨ a reflexive sheaf on X. The relation between the
holomorphic Euler characteristic of F̃ and that of the reflexive sheaf F = (σ∗F̃)∨∨ is given by

Proposition 7 ([10] or [11, 3.9]) With the notation of the previous paragraph for X, X̃, F = (σ∗F̃)∨∨ and
F̃ , then:

χ(X, F) = χ(X̃, F̃) +
∑

x∈Sing(X)

χ(x, F̃) (2)

χ(x, F̃) := h0(Ux, (σ∗F̃)∨∨/σ∗F̃) + h0(Ux, R1σ∗F̃)
or equivalently:

χ(x, F̃) = dim[H0(Ũx \ Ex, F̃)/H0(Ũx, F̃)] + h1(Ũx, F̃) (3)

where the Ux are Stein neighborhoods (can be chosen to be affine if X is projective) such that Ux ∩Sing(X) =
{x}. The χ(x, F̃) is called the local holomorphic Euler characteristic of F̃ at x.

Proof For the convenience of the reader, we provide a sketch of the argument.The Leray-Serre spectral
sequence for the sheaf F̃ and the morphism X̃

σ−→ X gives:

0 → H1(X, σ∗F̃) → H1(X̃, F̃) → H0(X, R1σ∗F̃) → H2(X, σ∗F̃) → H2(X̃, F̃) → 0
Moreover, H0(X, σ∗F̃) ≃ H0(X̃, F̃). The previous in conjunction with R1σ∗F̃ being supported at the

singularities of X gives that:

χ(X, σ∗F̃) = χ(X̃, F̃) +
∑

x∈Sing(X)

h0(Ux, R1σ∗F̃)

To conclude, the cohomology long exact sequence for:

0 → σ∗F̃ → F → F/σ∗F̃ → 0
and F/σ∗F̃ again being supported at the singularities of X gives :

χ(X, σ∗F̃) = χ(X, F) −
∑

x∈Sing(X)

h0(Ux, F/σ∗F̃)

Also observe that the reflexive nature of F = (σ∗F̃)∨∨ gives that H0(Ux, F = H0(Ux \ {x}, F) ≃
H0(Ũx \ Ex, F̃) □
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2.3 Surface singularity invariants ℏ0(x, m) and h1(x, m)
The study of symmetric differentials on resolutions of orbifold surfaces requires a handle on the
following surface invariants.

Definition 1 Let σ : (X̃, E) → (X, x) be the minimal resolution of the germ of the quotient surface
singularity (X, x).

ℏ0(x, m) := dim[H0(X̃ \ E, SmΩ1
X̃

)/H0(X̃, SmΩ1
X̃

)] (4)

h1(x, m) := h0(X, R1σ∗SmΩ1
X̃

) (5)

From local cohomology on the germ (X,x) of a canonical singularity, we have the following
inequality (which appears in Theorem 2(1)) between the invariants ℏ0(x,m) and h1(x,m): Let (X,x)
be the germ of a canonical surface singularity; then, for all m ≥ 0

ℏ0(x,m) ≤ h1(x,m).

Proof of Theorem 2(1). Let X be an affine surface with a single canonical singularity x and σ : X̃ → X a
minimal resolution with exceptional set E. The long exact sequence for local cohomology:

0 → H0
E(X̃, SmΩ1

X̃
) → H0(X̃, SmΩ1

X̃
) → H0(X̃ \ E, SmΩ1

X̃
) → H1

E(X̃, SmΩ1
X̃

),
in conjunction with H0

E(X̃, SmΩ1
X̃

) = 0 (since SmΩ1
X̃

is torsion free) gives that:

dim[H0(X̃ \ E, SmΩ1
X̃

)/H0(X̃, SmΩ1
X̃

)] ≤ h1
E(X̃, SmΩ1

X̃
)

Proposition 2.3 of [17] (see also [18]) on the cohomology with compact supports on neighborhoods of
exceptional sets states that

h1
E(X̃, SmΩ1

X̃
) = h1

c(X̃, SmΩ1
X̃

),
the subscript c indicating cohomology with compact supports.

We then use the equality

h1
c(X̃, SmΩ1

X̃
) = h1(X̃, (SmΩ1

X̃
)∨ ⊗ KX̃)

that follows from a version of Serre duality (see [24, p.225]). More precisely, we have the cup product pairing

H1(X̃, (SmΩ1
X̃

)∨ ⊗ KX̃) × H1
c (X̃, SmΩ1

X̃
) → H2

c (X, KX̃),
and the trace map H2

c (X̃, KX̃) → C gives a duality morphism:

φ : H1
c (X̃, SmΩ1

X̃
) → H1(X̃, (SmΩ1

X̃
)∨ ⊗ KX̃),

which is surjective and injective if h1(X̃, (SmΩ1
X̃

)∨ ⊗KX̃) and h2(X̃, (SmΩ1
X̃

)∨ ⊗KX̃) are finite dimensional,
respectively. The finiteness follows from [25] and holds for all coherent sheaves on a strictly pseudo-convex
surface, and it is also a consequence of applying the Leray spectral sequence to a projective surface with such
a singularity.

Combining the previous equalities with the property that a canonical surface singularity has KX̃ = OX̃ ,
plus the fact the Ω1

X̃

∨ ∼= Ω1
X̃

⊗ K∨
X̃

, we obtain that

h1
E(X̃, SmΩ1

X̃
) = h1(X̃, SmΩ1

X̃
)

and the result follows. □
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2.4 Relations between Euler characteristics of symmetric powers of the
cotangent bundle on orbifold surfaces and their singularity invariants

2.4.1 The relation between χ(X, ŜmΩ1
X) and χorb(X, ŜmΩ1

X)
Define

χorb(X,F) :=
∫

X

chorb(F)tdorb(X) (6)

to be the orbifold Euler characteristic of the orbifold vector bundle F (as in [11]). The orbifold
Chern character chorb(F) of F and the orbifold Todd class tdorb(X) of TX involve the orbifold Chern
classes of the sheaf F and the tangent bundle of X (for constructions of orbifold Chern classes see
[23] Section 2).

Definition 2 Let (X, x) be a germ of quotient surface singularity. Consider the invariants, m ≥ 1:

µ(x, m) := 1
|Gx|

∑
g∈Gx\{Id}

Tr(ρŜmΩ1
X

(g))
det(Id −g) (7)

where Gx ⊂ GL(2,C) is the local fundamental group and ρŜmΩ1
X

the representation of Gx associated
to the orbifold vector bundle ŜmΩ1

X (see [11] 2.6 for the bijective association of isomorphism classes
of representations of Gx to isomorphism classes of germs of orbifold vector bundles at the quotient
singularity with local fundamental group Gx).

If X is smooth and the sheaf F is locally free, then the Hirzebruch-Rieman-Roch states that
χ(X,F) = χorb(X,F). In the case X is an orbifold with isolated singularities and F is an orbifold
vector bundle, the Euler characteristics χ(X,F) and χorb(X,F) no longer coincide. The difference
is concentrated on the singularities.

Proposition 8 Let X be a compact orbifold surface. Then

χ(X, ŜmΩ1
X) = χorb(X, ŜmΩ1

X) +
∑

x∈Sing(X)

µ(x, m) (8)

Proof Each germ of a quotient singularity (X, x) has uniquely defined group homomorphisms µ(x, −) :
Korb((X, x)) → Q, where Korb((X, x)) is the Grothendieck group of orbifold vector bundles on (X, x), such
that for a compact orbifold surface X and orbifold vector bundle F the following holds:

χ(X, F) = χorb(X, F) +
∑

x∈Sing(X)

µ(x, [F ]x),

where [F ]x is the class of F in Korb((X, x)) ([12, §3] and [11, §3.5]).
The representation-theoretic expression (7) for the invariants µ(x, m) is derived from the Atiyah-Singer

equivariant Riemann-Roch (see for example [11, 3.17]) applied to the case µ(x, [ŜmΩ1
X ]x). □

2.4.2 Local Chern numbers and the relation between χorb(X̃, SmΩ1
X̃

) and
χorb(X, ŜmΩ1

X)

Let σ : (X̃, E) → (X,x) be the minimal resolution of the germ of a quotient surface singularity.
Associated to a locally free sheaf F on X̃, one has the relative local Chern classes ci(x,F) ∈

9



H2i(X̃, ∂X,Q), with H4(X̃, ∂X,Q) = Q (cf. [10, §0] and [12, §2]). Alternatively, the local Chern
classes

ci(x,F) ∈ H2i
dRc

(
(X̃, E),Q

)
,

where dRc stands for de Rham cohomology with compact supports (cf. [11, §3]).

From the local Chern classes we can obtain local Chern numbers. We are interested in the
following:

c2
1(x) := c2

1(x, TX̃) = c2
1(x,Ω1

X̃
) ∈ Q,

c2(x) := c2(x, TX̃) = c2(x,Ω1
X̃

) ∈ Q
s2(x) = c2

1(x) − c2(x)

The following facts will be important later:

i) c2(x) = e(E) − 1
|Gx|

, (9)

with e(E) the topological Euler characteristic of the exceptional locus and |Gx| the order of the local
fundamental group ([11] 3.18).

ii) If (X,x) is the germ of a canonical surface singularity, then

s2(x) = −c2(x), (10)

since c2
1(x) = 0, as the canonical divisor is trivial in a neighborhood of the exceptional set of the

minimal resolution of a canonical singularity.

Definition 3 Let (X, x) be a germ of a quotient surface singularity. The local orbifold Euler characteristics
is given by

χorb(x, m) := s2(x)
3! m3 − 1

2c2(x)m2 − c2
1(x) + 3c2(x)

12 m + c2
1(x) + c2(x)

12 (11)

Let X be a compact orbifold surface and X̃ its minimal resolution. The relation between the
orbifold Euler characteristics of SmΩ1

X̃
on X̃ and of ŜmΩ1

X on X involves the local orbifold Euler
characteristics at the singularities.

Proposition 9 Let X be a compact orbifold surface, X̃
σ−→ X be the minimal resolution. The following holds:

χ(X̃, SmΩ1
X̃

) = χorb(X̃, SmΩ1
X̃

) = χorb(X, ŜmΩ1
X) +

∑
x∈Sing(X)

χorb(x, m) (12)

Proof The first equality holds since X̃ is smooth. The local orbifold Euler characteristics χorb(x, m) have
the same topological expression as the global counterpart for ŜmΩ1

X or SmΩ1
X̃

but with the global Chern
numbers replaced by the local Chern numbers. The lemma then follows from Proposition 3.14 of [11] which
relates local and global Chern numbers. □

10



2.4.3 The relation between the singularity invariants

Proposition 10 Let (X, x) be the germ of a surface quotient singularity. Then for all m ≥ 0,

h1(x, m) = µ(x, m) − χorb(x, m) − ℏ0(x, m) (13)

Proof It follows from combining (2), Proposition 8, and Proposition 9. □

2.5 Asymptotics

If X is the minimal resolution of an orbifold surface Y , the asymptotics of h1(y,m) for quotient
singularities y ∈ Sing(Y ) will be used in Section 2 to derive a lower bound for the m-asymptotics of
h1(X,SmΩ1

X).

2.5.1 The asymptotics of µ(x, m) and χorb(x, m)

Proposition 11 Let (X, x) be the germ of a surface quotient singularity. Then

lim
m→∞

µ(x, m)
m3 = 0 (14)

lim
m→∞

χorb(x, m)
m3 = −s2(x)

3! (15)

Proof Equality (15) is immediate from expression (11). Equality (14) is a particular case of the general result

stating that lim
m→∞

µ(x, [ŜmF ])
m3 = 0 for every rank 2 reflexive sheaf F on a quotient surface singularity (see

[10], [11, 4.4] or [12]). □

2.5.2 The asymptotics of h1(x, m)
Definition 4 The limit

h1
Ω(x) = lim inf

m→∞
h1(x, m)

m3 (16)

is called the 1-st cohomological ΩX -asymptotics of the quotient surface singularity (X, x).

Remark 1 In Section 2.6, we will see that for An singularities, the liminf in (16) is the limit. We expect
this fact to also hold for all quotient singularities.

We can finally establish the following result (which appears in Theorem 2(2)) which plays a key
role in Section 2 when comparing the bigness criteria: let (X,x) be the germ of a canonical surface
singularity; then

h1
Ω(x) ≥ c2(x)

2 · 3! (17)

Proof of Theorem 2(2). From Propositions 2 and 3, we have the following asymptotic relation

lim
m→∞

ℏ0(x, m) + h1(x, m)
m3 = −

s2(x, TXmin )
3! . (18)

For canonical singularities, we have from (10) that s2(x) = −c2(x), and the claim then follows from
Proposition 1 stating that ℏ0(x, m) ≤ h1(x, m) for all m ≥ 0. □

11



2.6 An singularities

We can find all the invariants we have considered for An singularities. In [16], a non-closed formula
for finding ℏ0(An,m) (i.e. ℏ0(x,m) when x is a An singularity) was established. In part II of this
work, we adapt the method in [16] to show that for n fixed ℏ0(An,m) is a quasi-polynomial in m
of degree 3 (the coefficients are periodic functions of m), and more importantly, we find a closed
formula in n for the leading coefficient ℏ0

Ω(An). From this follows a closed formula for h1
Ω(An) that

allows us to establish the strength of the CMS criterion in Section 2 and 3.

We also establish the formula for µ(An,m). We show that for n fixed, µ(An,m) are quasi-
polynomials of degree 1 and 0 inm, with coefficients of period n+1, for n odd and n even, respectively.
We note that due to (11), the formula for χorb(An,m) is known, and due to (13) all invariants
follow from µ(An,m), ℏ0(An,m) and χorb(An,m). An application of these non-asymptotic invariants
appears in Section 4 where we analyze the minimal degrees of symmetric differentials that can occur
on deformations of smooth hypersurfaces of degree d in P3.

We start by referencing and giving a short description of the results of Part II that are important
for Sections 2 and 3. In Theorem 1 (II) (i.e. theorem 1 of part II), we show that for each n and m,
ℏ0(An,m) is given by a weighted lattice sum over a polygon Pn(m),

ℏ0(An,m) =
∑

x=(x1,x2)∈Pn(m)∩Z2

x1+(n+1)x2≡m mod 2

hn,m(x).

If we fix n, then ℏ0(An,m) is a quasi-polynomial in m of degree 3 with constant leading coefficient
ℏ0

Ω(An) for which we present a closed formula in n determined in Part (b) of the theorem. We also
obtain that

lim
n→∞

ℏ0
Ω(An) = 2π2

9 − 2 (19)

In terms of bigness of the cotangent bundle, the relevant invariant is the 1-st cohomological ΩX -
asymptotics h1

Ω(An) of An. Theorem 2(II) gives that h1
Ω(An) = limm→∞

h1(An,m)
m3 (the limit exists)

and we obtain the closed formula

h1
Ω(An) = n5 + 19n4 + 83n3 + 137n2 + 80n

6(n+ 1)2(n+ 2)2 − 4
3

n∑
k=1

1
k2 . (20)

Corollary 2 The invariant h1
Ω(An) satisfies:

i)
lim

n→∞
h1

Ω(An) = ∞ (21)

ii)
n

6 − 4π2 − 39
18 < h1

Ω(An) < n

6 (22)

iii)
h1

Ω(An1+n2) > h1
Ω(An1) + h1

Ω(An2) (23)

The comparison of the bigness criteria in later sections involves the ratio between the 1-st coho-
mological Ω-asymptotics and c2(An)

2·3! (the contribution from an An singularity in the RR-criterion,
see introduction).

Corollary 3 The ratio
h1

Ω(An)
c2(An)

2·3!

increases with n and:

12



lim
n→∞

h1
Ω(An)

c2(An)
2·3!

= 2 (24)

Proof This follows from (18), (19), (21). □

Table 2: 1-st cohomological Ω-asymptotics and its ratio to c2(An)
2·3! for low n

n 1 2 3 4 5 6 ≫ 0

h1
Ω(An)

4
27

67
216

1283
2700

577
900

106 819
132 300

1 030 727
1 058 400

≈
n

6
− 4π2−39

18

h1
Ω(An)
c2(An)

2·3!

32
27

67
48

5132
3375

577
360

213 638
128 625 ≈ 1.66 1 030 727

604 800 ≈ 1.70 ≈ 2

Question: h1
Ω(An) < n

6 holds for n ≥ 1. Do the inequalities h1
Ω(Dn) < n

6 , n ≥ 4 and h1
Ω(Em) < m

6 ,
m = 6, 7, 8 also hold?

The invariants χorb(An, S
mΩ1

X̃
) for an An singularity are given from the same topological

expression as (11) but with the local Chern and Segre numbers:

c2
1(An,Ω1

X̃
) = 0 and c2(An,Ω1

X̃
) = n(n+ 2)

n+ 1

Hence

χorb(An, S
mΩ1

X̃
) = − n2 + 2n

6(n+ 1)

(
m3 + 3m2 + 3

2m− 1
2

)
(25)

We turn our attention to the invariants µ(An,m) := µ(An, [ŜmΩ1
X ]). A key feature of these

invariants is that for all quotient singularities limm→∞
µ(x,[ŜmΩ1

X ])
m3 = 0, as was described in Propo-

sition 11. Hence they have no impact towards the 1-st cohomological ΩX -asymptotics of quotient
singularities.

We are interested in obtaining a formula for µ(An,m), the missing part in (13) to determine a
formula for h1(x,m). The latter can be used to determine if a surface X with An singularities has
symmetric differentials of degree m (see section 3.2).

Proof (of Theorem 6) It follows from (7) of section 1.7 that µ(An, m) can be computed via the representation
theoretical formula:

µ(An, m) = 1
|n + 1|

∑
g∈G∗

n+1

Tr(ρŜmΩ1
X

(g))
det(Id − g) , (26)

where Gn+1 :=
〈[

ε 0
0 ε−1

]〉
, ε is a primitive (n + 1)-root of unity, G∗

n+1 = Gn+1 \ {Id} and ρŜmΩ1
X

is the

representation canonically associated with the reflexive module (ŜmΩ1
X)An

over the local ring OAn
. This

representation can be obtained via the structural action of Gn+1 on the smoothing (C2, z1, z2) of (X, An);
more precisely, via its induced action on the fiber of the vector bundle (SmΩ1

C2 ) at (0, 0).
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The representation ρŜmΩ1
X

is given by:

ρŜmΩ1
X

([
εi 0
0 ε−i

])
=


ε−im

ε−im+2i

. . .
εim

 . (27)

Determining (26) using (27) gives:

µ(An, m) = 1
n + 1

m∑
k=0

n∑
i=1

(εi)m−2k

2 − εi − ε−i
. (28)

Using fn(j) :=
∑n

i=1
(εi)j

2−εi−ε−i , we re-express (28):

µ(An, m) = 1
n + 1

m∑
k=0

fn(m − 2k), (29)

Note that

fn(j) = fn(j′) if j ≡ j′ (mod n + 1) (30)
The sums appearing in fn(j) are well-studied. We have Lemma 3.3.2.1 of [26], stating that if 0 ≤ j ≤ n,

then:

fn(j) =
n∑

i=1

(εi)j

2 − εi − ε−i
= j(j − (n + 1))

2 + n2 + 2n

12 (31)

Then, the following are immediate

n∑
j=0

fn(j) = 0 for all n ≥ 0 (32)

n−1
2∑

j=0
fn(2j) = n + 1

8 ;

n−1
2∑

j=0
fn(2j + 1) = −n + 1

8 for all n ≥ 0 and odd (33)

For n even, µ(An, m) as a function of m attains at most n + 1 values, so, in particular, it is bounded. To
see this set:

αn(r) = 1
n + 1

r∑
k=0

fn(r − 2k) (34)

If n even, then for any i ∈ Z {m − 2i, m − 2(i + 1), ..., m − 2(i + n)} ≡ {0, ..., n} (mod n + 1). Now use
(30) and (32) to obtain that

∑i+n
k=i fn(m − 2k) = 0 for any i. All this can be used to derive, after setting

r ≡ m (mod n + 1) and 0 ≤ r ≤ n, that:

m∑
k=0

fn(m − 2k) =
m∑

k=0

fn(r − 2k) =
r∑

k=0

fn(r − 2k) +
m∑

k=r+1

fn(r − 2k) = αn(r), (35)

and hence

for n even: µ(An, m) = αn(r), r ≡ m (mod n + 1) and 0 ≤ r ≤ n

The formula for αn(r) appearing in the statement of the theorem follows from (34) (we omit the non-
enlightening algebraic manipulations involved).

If n is odd,
∑i+n

k=i fn(m − 2k) = 0 no longer holds, we have using (30), (34) and (33) (instead of (32)):

m∑
k=0

fn(m − 2k) =
r∑

k=0

fn(r − 2k) +
m∑

k=r+1

fn(r − 2k) = αn(r) + (−1)m

4 ⌊m + 1
n + 1 ⌋ (36)

Again with r ≡ m (mod n + 1) and 0 ≤ r ≤ n.
□

14



3 Bigness criteria

The cotangent bundle Ω1
X on a complex manifold X of dimension n is said to be big if

lim
m→∞

h0(X,SmΩ1
X)

m2n−1 ̸= 0,

i.e., the symmetric pluri-genera PS
m(X) := h0(X,SmΩ1

X) has the maximal growth order possible
with respect to m for dimX = n. The symmetric plurigenera are birational invariants and hence the
cotangent bundle being big is a birational property (among smooth representatives).

From now on, we restrict our attention to the surface case. Moreover, we are only interested in
surfaces X of general type since Ω1

X being big implies the canonical bundle KX is also big, see for
example [1].

3.1 Basic asymptotics of the symmetric plurigenera
The ingredients in the asymptotic behaviour of h0(X,SmΩ1

X) are determined by Riemann-Roch and
Bogomolov’s vanishing

H2(X,SmΩ1
X) = 0, m ≥ 3.

This follows from applying Serre duality to Bogomolov’s vanishing theorem for surfaces of general
type:

H0(X,SmTX ⊗Kp
X) = 0, m− 2p > 0

The latter vanishing follows from the KX -semi-stability properties of TX for minimal surfaces of
general type [7] and [8] (see Lemma 1). Hence for m ≥ 3:

h0(X,SmΩ1
X) = h1(X,SmΩ1

X) +
∫

X

ch(SmΩ1
X) td(X) (37)

Hence, the asymptotics of h0(X,SmΩ1
X) is given by

lim
m→∞

h0(X,SmΩ1
X)

m3 = lim
m→∞

h1(X,SmΩ1
X)

m3 + s2(X)
3! . (38)

Note that in (38), the limits are regular limits, and there is no need to use limsup since

(1) h0(X,SmΩ1
X) = h0(P(Ω1

X),O(m)) and the volume of a line bundle on a projective variety (in this
case O(1) on P(Ω1

X)) being given by a regular limit [27, 11.4.A], and
(2) the vanishing of h2(X,SmΩ1

X) for m ≥ 3 and the polynomial expression for
∫

X
ch(SmΩ1

X) td(X):∫
X

ch(SmΩ1
X) td(X) = s2

3!m
3 − 1

2c2m
2 − 1

12(c2
1 + 3c2)m+ 1

12(c2
1 + c2)

with c2
1 := c2

1(X) and c2 := c2(X) the Chern numbers of X and s2 = c2
1 −c2 the 2nd Segre number

of X.

3.2 Birational classes and invariants
The bigness of the cotangent bundle being a birational property motivated us to express part of the
bigness criterion in a birational form.

We consider birational classes X of surfaces of general type, i.e. containing smooth surfaces of
general type. Any such class X has two special representatives
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• Xmin, the minimal model of X (smooth and KXmin nef), and
• Xcan, the canonical model of X (canonical surface singularities and KXcan ample).

For any smooth X1 ∈ X , we have

X1
φ−→ Xmin

φc−→ Xcan,

where φ is a composition of blow downs of (−1)-curves (rational curves E with E ·E = −1) and φc

a contraction of ADE (−2)-curves configurations; recall that a (−2)-curve is a rational curve E with
E · E = −2). Note that Xmin is, in fact, the minimal resolution of Xcan.

Definition 5 If a birational class X has smooth representatives with big cotangent bundle, then we say that
X has big cotangent bundle Ω1

X .

There are two birational invariants that are involved in determining bigness of the cotangent
bundle.

Definition 6 Let X be a birational class of surfaces of general type.

i) the 2nd Segre number of X is s2(X ) := s2(Xmin).

ii) the 1st-cohomological Ω-asymptotics of X is:

h1
Ω(X ) := lim

m→∞

h1(Xmin, SmΩ1
Xmin

)
m3 . (39)

If X is a smooth surface of general type, the 1st-cohomological Ω-asymptotics of X is also defined by

h1
Ω(X) := lim

m→∞

h1(X,SmΩ1
X)

m3 .

We note that s2(X ) and h1
Ω(X ) are respectively the maximum of the s2(X) and the minimum of

the h1
Ω(X) for all smooth representatives X of X .

3.3 Birational version of the topological criterion for bigness
The simplest and most commonly used criterion for the bigness of the cotangent bundle of a surface
of general type follows from (2.2),

Criterion 1. (Topological bigness criterion) A smooth surface X of general type has big Ω1
X if

s2(X) > 0.

This criterion is not birational since blowing up a point on a surface X decreases the s2(X) by 2.

Criterion 1a. (Birational version of the topological bigness criterion) A birational class X of
surfaces of general type has big Ω1

X if s2(X ) > 0.

There are few known examples of birational classes X of surfaces with big cotangent bundle that
fail the birational version of the topological bigness criterion. One can find them in [9] and [19] for
example. To understand these examples, one needs to consider information on the canonical model
of X ; we will in particular focus on its singularities, to obtain bigness of the cotangent bundle.
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3.4 Complete criterion for bigness
This is an immediate consequence of (38):

Criterion 2. (Complete Bigness Criterion) A smooth surface X of general type has big Ω1
X if and

only if

h1
Ω(X) + s2(X)

3! > 0. (40)

Note that the quantity h1
Ω(X) + s2(X)

3! is a birational invariant.

Criterion 2a. (Birational Complete Bigness Criterion) A birational class X of surfaces of general
type has big Ω1

X if and only if

h1
Ω(X ) + s2(X )

3! > 0

The Complete Bigness Criterion requires a handle on h1
Ω(X ) (or h1

Ω(X)) which typically is more
delicate and illusive than the 2nd Segre number used in the topological criterion.

3.5 The QS-Bigness Criterion
In this section we get a handle on the 1-st cohomological Ω asymptotics h1

Ω(X) where X is a surface
of general type which is the minimal resolution of a normal surface Y with only quotient singularities.
We need Bogomolov’s vanishing result for orbifold surfaces of general type.

Lemma 1 Let Y be a surface of general type with only quotient singularities, then H2(Y, ŜmΩ1
Y ) = 0 for

m ≥ 3.

Proof Serre duality gives:

h2(Y, ŜmΩ1
Y ) = h0 (

Y, (ŜmTY ⊗ KY )∨∨)
Moreover, since (ŜmTY ⊗ KY )∨∨ ∼= i∗(SmTY ⊗ KY ), where i : Yreg ↪→ Y is the natural inclusion, it

follows that:

h2(Y, ŜmΩ1
Y ) = h0(Yreg, SmTY ⊗ KY )

Run the minimal model program for surfaces with quotient (log terminal) singularities, see [28] or for
details [29] section 10 (see also [30]). The contraction theorem, [29] 10.3, applied repeatedly to Y and its
contractions give the birational morphism:

ϕm : Y → Ym

where Ym is a normal projective surface with only quotient singularities projective with KYm
nef and big.

Since KYm
is nef and big, one has K2

Ym
> 0. If KYm

is not ample, then by Nakai-Moizeshon ampleness
criterion there is a curve C in Ym such that KYm

.C = 0 and hence by Hodge index theorem C2 < 0.
Artin’s contraction criterion gives that one can contract C and obtain a normal projective surface Y ′

m, the
singularities of Y ′

m are still only quotient singularities (see [29] 10.3). If the new surface Y ′
m does not have

ample canonical divisor find a curve C′ as above and contract it. Apply this process repeatedly till one
obtains a surface Yc with ample KYc

(this process must terminate due to finitness of the rank of the Picard
group). Hence, one has a birational morphism:

ϕc : Y → Yc

where Yc is a normal surface with only quotient singularities and KYc ample.
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The existence of Kahler-Einstein metrics on Yc (see [13] theorem A and [14]) imply that TYc
is KYc

-
semistable. Let Sc ⊂ Yc be the finite collection of points consisting of all the singularities of Yc and the
images of all curves contracted by the morphism ϕc. Set Uc = Yc \ Sc and U = ϕ−1

c (Uc) in Y , Uc and U are
biholomorphic. By Mehta-Ramanathan restriction theorem, see [31], for a very general curve C in the linear
system |lKYc

| with l ≫ 0, C ⊂ Uc, one has:

(i) (SmTYc,reg ⊗KYc,reg)|C is semi-stable

(ii) deg(SmTYc,reg ⊗KYc,reg)|C = (2 −m)(m+ 1)l
2 K2

Yc
< 0 for m ≥ 3.

If h2(Y, ŜmΩ1
Y ) = h0(Yreg, SmTY ⊗ KY ) ̸= 0, then for C as above very general would have

h0(C, (SmTYc,reg ⊗ KYc,reg )|C) ̸= 0 and (i) and (ii) produce a contradiction. □

Proof (of Theorem 1) The Leray-Serre spectral sequence for the sheaf SmΩ1
X and the minimal resolution

morphism σ : X → Y combined with the vanishing h2(X, SmΩ1
X) = 0 for m ≥ 3, gives for m ≥ 3:

h1(X, SmΩ1
X) = h1(Y, σ∗SmΩ1

X) +
∑

y∈Sing(Y )

h1(y, m) − h2(Y, σ∗SmΩ1
X) (41)

where as before h1(y, m) := h0(Uy, R1σ∗SmΩ1
Ũy

) with σ : Ũy → Uy the minimal resolution of an affine neigh-
borhood of y such that Uy ∩ Sing(Y ) = {y}. The localized component

∑
y∈Sing(Y ) h1(y, m) of h1(X, SmΩ1

X)
comes from the sheaf R1σ∗SmΩ1

X supported on the singular points of Y and hence:

H0 (
Y, R1σ∗SmΩ1

X

)
≃

⊕
y∈Sing(Y )

H0
(

Uy, σ∗R1SmΩ1
Ũy

)
giving

h0 (
Y, R1σ∗SmΩ1

X

)
=

∑
y∈Sing(Y )

h1(y, m)

We proceed to show h2(Y, σ∗SmΩ1
X) = 0, for m ≥ 3. Consider:

0 → σ∗SmΩ1
X → ŜmΩ1

Y → Qm → 0

Left injectivity holds since σ∗SmΩ1
X is torsion free. The support of Qm = (σ∗SmΩ1

X)∨∨
/

σ∗SmΩ1
X is

Sing(Y ) (recall that (σ∗SmΩ1
X)∨∨ ∼= ŜmΩ1

Y ). Hence it follows from the cohomology long exact sequence
that:

h2(Y, σ∗SmΩ1
X) = h2(Y, ŜmΩ1

X)

Applying Bogomolov’s vanishing for orbifolds surfaces of general type, Lemma 1, we have that

h1(X, SmΩ1
X) = h1(Y, σ∗SmΩ1

X) +
∑

y∈Sing(Y )

h1(y, m) (42)

A priori, we do not know if the separate limits limm→∞
h1(Y, σ∗SmΩ1

X)
m3 and

limm→∞

∑
y∈Sing(Y ) h1(y, m)

m3 exist. On the other hand one clearly has that∑
y∈Sing(Y )

h1
Ω(y) ≤ lim

m→∞

h1(X, SmΩ1
X)

m3 (43)

and hence the result follows from the Complete Bigness Criterion of 2.4. □
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3.6 CMS-bigness criterion and the components of h1
Ω(X )

There is a natural application of the QS-Bigness Criterion to any minimal surface of general type
X (with Y in the criterion being the canonical model of X). We obtain a criterion of bigness of the
cotangent bundle for birational classes of surfaces of general type.

CMS Bigness Criterion. Let X be a birational class of surfaces of general type. Then the cotangent
bundle Ω1

X is big if ∑
x∈Sing(Xcan)

h1
Ω(x) + s2(X )

3! > 0 (44)

The CMS Bigness Criterion is the birational criterion that deals with the components of the
Complete bigness criterion (40) that are naturally easier to get a handle on; that is the criterion is
concerned only with topological data of the minimal model plus the local information encoded in
the singularities of the canonical model.

The analytical component, h1
Ω(X), of the Complete bigness criterion is the delicate component of

this criterion. For example h1
Ω(X) can change under smooth deformations (see next section), while

the topological component s2(X)
3! is preserved under deformation. The CMS-bigness criterion deals

with the localized component of h1
Ω(X) which is derived from the sheaves R1σ∗S

mΩ1
Xmin

, m ≥ 0,
supported at the singular points of Xcan, σ : Xmin → Xcan.

Definition 7 Let X be a birational class of surfaces of general type with minimal model Xmin and canonical
model Xcan. We define the localized component of the 1-st cohomological Ω1

X asymptotics, h1
Ω(X ), to be:

Lh1
Ω(X ) :=

∑
x∈Sing(Xcan)

h1
Ω(x) (45)

and the nonlocalized component of h1
Ω(X ) to be:

NLh1
Ω(X ) := lim inf

m→∞

h1(Xcan, σ∗SmΩ1
Xmin

)
m3 . (46)

We can also define the localized and nonlocalized components of h1
Ω(X) for any surface of general

type X. If X is minimal then the expressions are verbatim those in (45) and (46). If the surface X is
not minimal, then the localized component also would have contributions coming from each of the
blow ups required to obtain X from Xmin.

Proposition 12 Let X be a birational class of surfaces of general type whose canonical model has only
singularities of type An. Then:

h1
Ω(X ) = Lh1

Ω(X ) + NLh1
Ω(X ) (47)

Proof The identity (47) follows from (42) in the proof of Theorem 1 applied to the minimal model of X plus
the existence of the limit limm→∞

h1(An,m)
m3 for all n ≥ 1 that is guaranteed in Theorem 2(II). □

Proposition 12 should hold in the general case, i.e., when we do not restrict the canonical model
of X to have only An singularities.

This article is primarily focused on the localized component of h1
Ω(X ). Future work will be

dedicated to getting a handle on the non-localized component of h1
Ω(X ).
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3.7 CMS criterion range

We consider the question about which pairs of Chern numbers (c2, c
2
1) cannot be attained by a

birational class X satisfying the CMS-criterion and address the implications towards the geography
of surfaces with big cotangent bundle.

Let X be a surface birational class of general type, its pair of Chern numbers (c2(X ), c2
1(X )) are

defined to be (c2(Xmin), c2
1(Xmin)) and for notation simplicity denoted by (c2, c

2
1). More generally, we

set all the topological invariants of a birational class to be those of its minimal model.

Let GT , CGT and the excluded range for a criterion C, ER(C)⊂ CGT , be as in the introduction.
It is known that

CGT ⊂ {(c2, c
2
1) | 1

5(c2 − 36) ≤ c2
1 ≤ 3c2, c2 + c2

1 ≡12 0},

the limiting lines follow from the Bogomolov-Miyaoka-Yau (above) and Noether’s (below) inequali-
ties, the modular condition follows from Noether’s formula c2 + c2

1 = 12χ, see [32].

It is straightforward that all the pairs of Chern numbers lying in the region {c2
1 > c2}∩CGT , are

attained by X satisfying the CMS-criterion, due to the topological bigness criterion. However, the
CMS-criterion is not topological, in the sense that the topology of X might not determine whether
the criterion condition, Lh1

Ω(X ) + s2(X )
3! > 0, holds or not. Examples illustrating this appeared in

[9], see Section 3.1.

We turn towards investigating the region ER(CMS)⊂ {c2
1 ≤ c2}∩CGT , i.e. the region the CMS-

criterion cannot hold. The tools to address this problem must be results where the Chern numbers
of X bound the canonical singularities of the canonical model. To our knowledge, there are two such
general results as mentioned in the introduction: the H-bound (**) and the M-bound (*); the bound
coming from standard Hodge theory (see below) and the Miyaoka bound [21], respectively.

The H-bound constrains the singularities of the canonical model by bounding

ρ−2(X ) := # {(−2)-curves on Xmin}

The standard reasoning behind the H-bound is: given a smooth projective surface Y , then
ρ−2(Y ) ≤ ρ(Y ) − 1 ≤ h1,1(Y ) − 1, with ρ(Y ) the Picard number of Y ; the homology classes of the
(−2)−curves are linearly independent in H2(Y,C) (the connected configurations of (−2)−curves have
negative definite intersection pairing); then using b2(Y ) = h1,1(Y ) + 2pg(Y ), c2(Y ) = 2 − 2b1(Y ) +
b2(Y ) and 12(1 − 1

2b1(Y ) + pg(Y )) = c2
1(Y ) + c2(Y ), we obtain:

(H-bound) ρ−2(X ) ≤ 5c2(X ) − c2
1(X )

6 + b1(X ) − 1 (48)

The M-bound is a consequence of the logarithmic analogue of the Bogomolov-Miyaoka-Yau
inequality concerning minimal resolutions of normal surfaces with quotient singularities, [21,
Theorem 1.1]. The M-bound corresponds to the special case concerning the pair (Xmin, Xcan):

∑
x∈Sing(Xcan)

c2(x) ≤ c2(X ) − 1
3c

2
1(X ) (49)

Remark 2 (Excluded range for the RR-criterion) As mentioned in the introduction, the RR-criterion for
bigness of Ω1

X was formulated in [19]. We translate the RR-criterion to the framework used in this work (see
Section 1.4.7): Ω1

X is big, if s2,orb(Xcan) + s2(X ) > 0, or equivalently
∑

x∈Sing(Xcan)
c2(x)
2·3! + s2(X )

3! > 0. The
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M-bound gives a direct bound to the singularity contribution in the criterion and it is straightforward to see
that all Chern number pairs satisfying c2

1
c2

≤ 3
5 belong to the excluded range ER(RR).

The difference between the CMS and the RR criteria comes from the singularity contribution to
a lower bound of h1

Ω(X ), that is,
∑

x∈Sing(Xcan) h
1
Ω(x) versus

∑
x∈Sing(Xcan)

c2(x)
2·3! . In this respect, we

have obtained two results: 1) Theorem 2(b) states that for all canonical singularities:

h1
Ω(x) ≥ c2(x)

2 · 3! (50)

showing that CMS criterion holds whenever the RR-criterion holds; and 2) for An singularities,

h1
Ω(An) = n5 + 19n4 + 83n3 + 137n2 + 80n

6(n+ 1)2(n+ 2)2 − 4
3

n∑
k=1

1
k2 >

n(n+ 2)
12(n+ 1) = c2(An)

2 · 3! (51)

In fact, the ratio h1
Ω(An) to c2(An)

2·3! grows with n, with 32/27 for n = 1 and approaching 2 as n → ∞.
Therefore, if the canonical model of a birational class X has only singularities of type A, then the
CMS criterion needs between 27

32 to 1
2 of the number of singularities needed by the RR criterion to

guarantee bigness of the cotangent bundle.

The interaction between the M-bound and the CMS criterion is not as straightforward as it is for
the RR-criterion. The contributions from each singularity, h1

Ω(x), do not satisfy h1
Ω(x)

c2(x) = C with C

independent of the type of the canonical singularity x. We start by determining how the M-bound
constrains ρ−2(X ).

Lemma 2 Let ρ−2,M (c2, c2
1) denote the maximum of (−2)-curves allowed by the M-bound on X ∈ GT with

pair of Chern numbers (c2, c2
1). Then

ρ−2,M (c2, c2
1) =


0 c2 − c2

1
3 = 0

2 c2 − c2
1
3 = 8

3
⌊c2 − c2

1
3 ⌋ − 1 otherwise.

(52)

Moreover, ρ−2,M (c2, c2
1) is attained by X having Xcan with a single singularity of type A.

Proof Let ρ−2(x) be the number of (−2)-curves on the exceptional locus of the minimal resolution of a
canonical singularity x and r−2(x) := c2(x)

ρ−2(x) . Then,

r−2(An) = n + 1
n

− 1
n(n + 1) , r−2(Dn) = n + 1

n
− 1

4n(n − 2)
r−2(E6) = 7

6 − 1
6·24 , r−2(E7) = 8

7 − 1
7·48 and r−2(E8) = 9

8 − 1
8·120 .

It follows that r−2(An) < r−2(Dn) < r−2(En) (whenever it makes sense) and r−2(An) decreases with
n. Hence, the M-bound allows the most (−2)-curves if they originate from a single singularity of type An

with highest n allowed. The result then follows from the formula for the An case and the fact that c2 − c2
1
3

must be a multiple of 4
3 due to c2 + c2

1 ≡ 0 mod 12. □

Remark 3 The M-bound can at most force a finite collection of pairs of Chern numbers to be in the excluded
range ER(CMS). Let (c2, c2

1) ∈ ER(CMS), then c2
1 ≤ c2 which in turn implies

ρ−2,M (c2, c2
1) = ⌊c2 − c2

1
3 ⌋ − 1.
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As observed in Lemma 2, the M-bound allows the existence of an X ∈ GT having the pair of Chern
numbers (c2, c2

1) and whose Xcan has one An with n = ⌊c2 − c2
1
3 ⌋ − 1. Then, using h1

Ω(An) > n
6 − 4π2−39

18 , it
follows that such X has Lh1

Ω(X ) + s2(X )
3! > 0 unless c2

1 = 1, 2. Hence, the M-bound can at most force 7 pairs
to belong to ER(CMS), while it forces infinitely many to be in ER(RR).

We will see below that the H-bound imposes stronger restrictions on the CMS-criterion than the
M-bound.

Lemma 3 Let X ∈ GT be regular with a pair of Chern numbers (c2, c2
1). Then, the H-bound for ρ−2(X ) is

less than ρ−2,M (c2, c2
1) when c2

1 ≤ c2.

Proof The claim follows since in the region c2
1 ≤ c2, we have ρ−2,M (c2, c2

1) = ⌊c2 − c2
1
3 ⌋−1 while the H-bound

for (a regular) X gives ρ−2(X ) < max{⌊ 1
6 (5c2 − c2

1)⌋ − 1, 0}. □

Lemma 4 Let X ∈ GT be such that its canonical model Xcan only has singularities of type A. Then,

ρ−2(X )
6 − # Sing(Xcan)

37 < Lh1
Ω(X ) <

ρ−2(X )
6 .

Proof Let Sing(Xcan) = {x1, ..., xk} with xi an Ani singularity; then, Lh1
Ω(X ) =

∑k
i=1 h1

Ω(Ani ). Since
h1

Ω(An) as a function of n satisfies h1
Ω(Ar+s) > h1

Ω(Ar) + h1
Ω(As), and h1

Ω(An) < n
6 (Corollary 2), and∑k

i=1 ni = ρ−2(X ), it follows that

k∑
i=1

h1
Ω(Ani ) ≤ h1

Ω(Aρ−2(X )) <
ρ−2(X )

6 .

For the lower bound, use ni
6 − 1

37 < h1
Ω(Ani ) which follows from Corollary 2 and

1
38 <

4π2 − 39
18 <

1
37 ,

to get the claimed inequality. □

Now we are ready to prove Theorem 3.

Proof (of Theorem 3) Let X ∈ GT be such that its canonical model has only singularities of type A.

Case c2
1 < 1

5 c2 :

Recall that if a minimal surface of general type Y satisfies c2
1(Y ) < 1

5 c2(Y ), then Y is regular (b1(Y ) = 0);
if b1(Y ) ̸= 0, then Y would have unramified covers Yd of any degree d and these covers are minimal with
c2

1(Yd) = dc2
1(Y ) and c2(Yd) = dc2(Y ) (same ratio c2

1
c2

as for Y ) making Yd for d sufficiently large below the
Noether’s line.

Since X is regular, it follows from Lemma 3 and Lemma 4 that

Lh1
Ω(X ) <

1
36(5c2 − c2

1 − 6),

and

Lh1
Ω(X ) + s2(X )

3! <
1
36(5c2

1 − c2 − 6). (53)

This implies that any regular X with canonical model Xcan with only singularities of type A will not
satisfy the CMS-criterion if c2

1 ≤ 1
5 (c2 + 6) and hence this case is settled.

Case c2
1 = 1

5 c2:

The subcase where X is regular follows from the paragraph above.

Otherwise, Horikawa [33] (Theorem 5.1) showed that X has b1(X ) = 2 and Xmin is a fibration f : Xmin →
C over an elliptic curve C with general fiber a curve of genus 2.
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We claim that ρ−2(X ) ≤ ρ(Xmin) − 2. The claim follows since the classes of the (−2)-curves, of an
hyperplane section H and of a fiber F in H1,1(Xmin) are linearly independent. The (−2)-curves are necessarily
contained in the fibers of f , hence the class of H can not be spanned by the classes of the (−2)-curves and of
F (otherwise, H · F = 0). Finally F can not be in the span of the classes of the (−2)−curves, since otherwise
F 2 < 0. The (-2)-curves are grouped in non-intersecting collections each with negative definite intersection
pairing.

The claim, along with the fact that b1(X ) = 2 and the Hodge-theoretic bound on the Picard number
ρ(Xmin) ≤ 1

6 (5c2 − c2
1) + b1(X ) give that ρ−2(X ) ≤ 4c2

5 . It follows from Lemma 4 that

Lh1
Ω(X ) + s2(X )

3! <
1
6(4c2

5 + c2
5 − c2) = 0,

and hence X does not satisfy the CMS-criterion.

Claim—The H-bound and M-bound cannot rule out the existence of X ∈ GT satisfying the CMS-criterion
if c2

1 ≥ 1
5 (c2 + 7).

If c2
1 > c2, then X necessarily satisfies the CMS-criterion.

If 1
5 (c2 + 7) ≤ c2

1 ≤ c2, then due to Lemma 3, the H-bound with b1(X ) = 0 gives the lowest upper
bound to ρ−2(X ). Hence we can not rule out ρ−2(X ) = 1

6 (5c2 − c2
1) − 1 (this number is an integer due to

c2 + c2
1 ≡ 0 mod 12) and that these (−2)-curves come from a single singularity of type A in Xcan. In this

case Lemma 4 gives

Lh1
Ω(X ) = h1

Ω(A 1
6 (5c2−c2

1)−1) >
1
36(5c2 − c2

1 − 6) − 1
37

and

Lh1
Ω(X ) + s2(X )

3! <
1
36(5c2

1 − c2 − 6) − 1
37

and the claim follows.
The claim implies that the H-bound and M -bound cannot rule out the existence of X ∈ GT with Ω1

X
big with any pair of Chern numbers satisfying c2

1 ≥ 1
5 (c2 + 7). Therefore. it allows

α
Big

= inf
{

c2
1

c2
(X )| X ∈ GT with Ω1

X big
}

to be as low as 1
5 .

□

4 Applications
4.1 Degrees of hypersurfaces of P3 with deformations with big cotangent

bundle and the Green-Griffiths-Lang conjecture
Smooth hypersurfaces Hd ⊂ P3 of degree d ≥ 5 have the cotangent bundle Ω1

Hd
with the positivity

property that the canonical divisor KHd
= (d − 4)H is ample (H an hyperplane section of Hd).

Nevertheless, these surfaces Hd have no symmetric differentials ([22], [34] or see also [35]), so Ω1
Hd

is very far from being positive in the sense of being big. Hence, symmetric differentials play no role
in proving the Green-Griffiths-Lang (GGL) conjecture for smooth hypersurfaces or addressing the
Kobayashi Conjecture stating that a general hypersurface of Pn of sufficient large degree has no entire
curves. In both cases, one has to use jet differentials, Diverio, Merker and Rousseau in [36] proved
GGL-conjecture for generic hypersurfaces of Pn with sufficiently large degree and finally Brotbek
proved the Kobayashi conjecture in [37] (in both cases the degrees have to be large).

We are interested in determining when symmetric differentials play a role in the GGL conjecture
in the following two related cases:

1. hypersurfaces of P3 with canonical singularities;
2. special representatives of the deformation equivalence classes of smooth hypersurfaces

of P3.
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Recall, two smooth surfaces X and Y are said to be deformation equivalent if there are smooth
pairs (Xi, Ti) with πi : Xi → Ti smooth fibrations and ti,0, ti,1 ∈ Ti , i = 1, ..., k, such that X ≃
π−1

1 (t1,0), π−1
i (ti,1) ≃ π−1

i (ti+1,0) and Y ≃ π−1
1 (tk,1).

Both cases (a) and (b) are related since the minimal resolution of a hypersurface Xd ⊂ P3 of
degree d with canonical singularities is deformation equivalent to a smooth hypersurface of P3 of the
same degree d. This is a consequence of the Brieskorn simultaneous resolution theorem [38].

The tool in the background is the work of Bogomolov [3] and McQuillan [4] that state that the
algebraic differential equations coming from symmetric differntials on a projective surface X are
enough to obtain the GGL-conjecture if X has big Ω1

X .

Question: Let [Hd] be the deformation equivalence class of smooth hypersurfaces of P3 with degree
d. Is

S :=
{
d | ∃X ∈ [Hd] with Ω1

X big
}

non-empty? If yes, what is dmin := minS?

The first result [9] on this question showed that S ̸= ∅ using representatives of [Hd] which are
resolutions of nodal hypersurfaces (a miscalculation of ℏ0

Ω(A1) caused a wrong upper bound for
dmin). In [19] also using of nodal hypersurfaces it was shown that dmin ≤ 13 (due to Remark 2 the
RR-criterion can at best obtain dmin ≤ 12). In [15] with the correct h1

Ω(A1), dmin ≤ 10 was achieved
(see also [39]). This is the strongest result possible using nodal hypersurfaces and the CMS criterion.
In [40] two of the authors showed that by considering A2 singularities one can improve upon the
nodal case and obtain dmin ≤ 9. Joint work of the second author and the third author appeared in
the thesis [16] where the computation of h1

Ω(An) for n = 1, 2, 3, 4, 8, 12, 16 and dmin ≤ 8 are achieved
(Theorem 4 is the publication of this latter result).

The proof of Theorem 4 is distinct from the one in [16]. In that one it was used a known
construction of an hypersurface of degree 8 with 64 A3 singularities and the knowledge of h1

Ω(A3). In
this proof make use of Theorem 2(II) [41], which makes possible the determination of Lh1

Ω(Y ) for all
the minimal resolutions Y of hypersurfaces X ⊂ P3 with known number of singularities of type A.

Proof (of Theorem 4) Let Xd be a cyclic cover of P2 of degree d branched along d lines in general position.
Xd is a hypersurface of P3 of degree d with 1

2 d(d−1) Ad−1 singularities. Denote by Yd the minimal resolution
of Xd.

Since the singular surface Xd only has canonical singularities, Brieskorn simultaneous resolution theorem
[38] gives that Yd is deformation equivalent to a smooth hypersurface of degree d in P3. Additionally, by
Ehresmann’s fibration theorem, Yd is diffeomorphic to a smooth hypersurface of degree d. Hence, s2(Yd) =
d(10 − 4d).

The number of (−2)-curves in Yd is ρ−2(Yd) = d(d−1)2

2 . It follows from Lemma 4 that the CMS-criterion
condition

s2(Yd)
6 + Lh1

Ω(Yd) > 0

holds if

37d2 − 376d + 783 ≥ 0.

The above holds for all d ≥ 8.

On the other hand, also due to Lemma 4, the CMS-criterion holds for Yd only if ρ−2(Yd)+s2(Yd) > 0, i.e.

(d − 7)(d − 3) > 0

Hence it is not possible to derive the existence of deformations of hypersurfaces of degrees d = 5, 6, 7 with
big cotangent bundle using cyclic covers of P2 of degree d branched along d lines in general position and the
CMS-criterion. □

Following the line of the arguments in the proof above, we obtain:
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Proposition 13 Let X ⊂ P3 be a hypersurface of degree d ≥ 5 with only canonical singularities of type A
and Sing(X) = {x1, ..., xk} with xi of type Ani . Then X satisfies the GGL-conjecture if

k∑
i=1

ni − 6k

37 ≥ d(4d − 10) (3.2)

Proof The minimal resolution Y of X has ρ−2(Y ) =
∑k

i=1 ni coming from k singularities and s2(Y ) =
d(10 − 4d). It follows from Lemma 4 and the CMS-criterion that Ω1

Y is big if 3.2 holds.
Once bigness of the cotangent bundle Ω1

Y is guaranteed, [4] gives that Y satisfies the GGL-conjecture
and this implies the same for X. Entire curves X lift, relative to the resolution map σ : Y → X, to Y . This
implies that the degeneracy locus of ZX ⊂ X (the minimal subvariety containing all entire curves of X) is
contained in the σ-projection of the degeneracy locus ZY ⊊ Y (note that ZX might be distinct from σ(ZY ),
since Sing(X) ⊂ σ(ZY ) while ZX does not necessarily contain Sing(X)). □

The approach to finding dmin using the CMS-criterion has to be accompanied by knowledge of
constructions of hypersurfaces with many canonical singularities and of theoretical bounds on the
number of possible canonical singularities that can occur (e.g. H-bound and M-bound). What can
be said about improving on dmin ≤ 8 that follows from Theorem 4?

Remark 4 (Varchenko’s spectral bound) In the case of hypersurfaces X ⊂ P3 with only canonical singular-
ities there is one additional known constraint on the singularities coming from Varchenko’s spectral bound
[42]. The implications of Varchenko’s spectral bound include the H-bound (48) (it follows from using the
spectral interval [1, 2]). For good expositions on the Varchenko’s spectral bound see [43] or [44, §7.1].

The Varchenko’s constraint gives better upper bounds to the number of possible singularities An with
low n in a hypersurface of given degree than the standard H-bound. For example in degree d = 5 it says
only 31 A1 can occur, while the H-bound allows says 44. However, as it was explained in Theorem 3, we are
interested in bounding the number of (−2)-curves (having them appear from a single singularity) and in this
case Varchenko’s constraint just gives the H-bound.

From the perspective of Theorem 3 on the excluded range ER(CMS), we leave the following

Remark 5 The case dmin ≤ 6 is not ruled out by either the H-bound or the M-bound, but dmin = 5 can not
be obtained via the CMS-criterion if we are considering resolutions of hypersurfaces with only singularities
of type A.

The remark follows since c2
1 ≥ 1

5 (c2 + 7) for Hd if d = 6, 7, while c2
1 ≤ 1

5 c2 for d = 5. Note that

c2
1

c2
(Hd) = d(d − 4)2

d(d2 − 4d + 6) ,

which gives 1
11 , 2

9 and 1
3 for d = 5, 6, 7, respectively.

We now make observations for the degrees 7, 6 and 5:

For deformations Yd of smooth hypersurfaces Hd ⊂ P3 of degree d, the best bound for the number
(−2)-curves is the the H-bound (Lemma 3), which gives:

ρ−2(Yd) ≤ 1
3d(2d2 − 6d+ 7) − 1 (54)

In the discussion below Yd are the minimal resolution of a hypersurface of degree d with only
singularities of type A.

For d = 7, we have s2(Y7) = −126. By Lemma 4, it follows that Yd needs at least 127 (−2)−curves
for the CMS-criterion to imply Ω1

Y7
big (they can come from 6 singularities due to Proposition 13,

but no more). Note that the bound, (54), gives ρ−2(Y7) ≤ 146. The known construction with highest
ρ−2(Y7) appears in Theorem 4 with ρ−2(Y7) = 126 (21 A6) and is borderline on the wrong side.

25



For d = 6, we have s2(Y6) = −84, hence the same argument as above gives that Y6 needs at
least 85 (−2)-curves for the CMS-criterion to imply Ω1

Y6
big, which is the maximum possible by

(54). The known construction with highest ρ−2(Y6) is again the one appearing in Theorem 4 with
ρ−2(Y6) = 75 (15 A5).

For d = 5, there is no hope for the CMS-criterion to apply to Y5, as was observed in Remark 5.
We note that s2(Y5) = −50, while the bound (54) gives ρ−2(Y5) ≤ 44. We do not expect dmin = 5
is possible, since c2

1
c2

(H5) = 1
11 < 1

5 . Considering hypersurfaces with singularities of type D and E
shouldn’t change the outcome with respect to the CMS-criterion. The path to resolve whether dmin =
5 is attainable should use Criterion 2 (full bigness criterion, (40)), Section 3.4, and hence getting a

hold on the nonlocalized component of h1
Ω(X ), NLh1

Ω(X ) := lim infm→∞
h1(Xcan, σ∗S

mΩ1
Xmin

)
m3 , see

(46).

4.1.1 Symmetric differential of a given degree in resolutions of hypersurfaces
with An singularities

Let Yd be the minimal resolution of a hypersurface Xd of degree d with only singularities of type
A. We consider the question of what can we say about h0(Yd, S

mΩ1
Yd

), if we know the singularities
of Xd.

Let Sing(Xd) = {x1, ..., xk} with xi an Ani singularity. Then, by Riemann-Roch and the lower
bound for h1(Yd, S

mΩYd
), coming from (42), we have:

h0(Yd, S
mΩ1

Yd
) + h2(Yd, S

mΩ1
Yd

) ≥ χ(Yd, S
mΩYd

) +
k∑

i=1
h1(Ani ,m), (55)

where

χ(Yd, S
mΩYd

) = −2d2 − 5d
3 m3 − d3 − 4d2 + 6d

2 m2 − 2d3 − 10d2 + 17d
6 m+ d3 − 6d2 + 11d

6 .

For m ≥ 3, Bogomolov’s vaninishing (3.1) gives h2(Yd, S
mΩ1

Yd
) = 0, hence the right side of (55)

gives a lower bound for h0(Yd, S
mΩ1

Yd
).

For m = 2, Serre duality and (Ω1
X)∨ ≃ Ω1

X ⊗ O(−KX) if X a surface give h2(Yd, S
2Ω1

Yd
) =

h0(Yd, S
2Ω1

Yd
⊗ O(−KYd

)). Moreover, since h0(Yd,O(KYd
)) = pg(Hd) ̸= 0, where Hd ⊂ P3 is a

smooth hypersurface of degree d ≥ 5, it follows that:

h2(Yd, S
mΩ1

Yd
) < h0(Yd, S

mΩ1
Yd

)

In particular, it follows that h0(Yd, S
2Ω1

Yd
) ̸= 0, if the right side of (55) is positive for m = 2.

We have all the ingredients to find the right side of (55). Recall that h1(Ani ,m) = χ(Ani ,m) −
ℏ0(Ani ,m), the first term of the right side is given by

Proposition 14 The local Euler characteristic χ(An, m) is given by

χ(An, m) = n2 + 2n

6(n + 1)

(
m3 + 3m2 + 3

2m − 1
2

)
+

{ (−1)m

4 ⌊m + 1
n + 1 ⌋ + αn(m) n odd

αn(m) n even,
(56)

where αn(m) is as defined in Theorem 6.
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Proof By Equation (12), χ(An, m) = µ(An, m) − χorb(An, m). The then result follows from (25) and
Theorem 6. □

The second term ℏ0(x,m) is determined by the formula in Theorem 1 in [41]. A relevant property
of ℏ0(An,m) to the following discussion is that ℏ0(An,m) = ℏ0(An, n) for m ≥ n.

Next, we consider the minimal degrees m that are guaranteed to exist by (55) in surfaces Y ′
d

and Y ′′
d belonging to two subclasses of the surfaces Yd. The surfaces Y ′

d are realizable (the ones
appearing in proof of Theorem 4) and Y ′′

d are not theorectically excluded. The surfaces Y ′′
d are the

minimal resolutions of hypersurfaces Xd with a single singularity of type An with n the largest
possible respecting the known bounds. The strongest bound in this case is the H-bound giving
n = 1

3d(2d2 − 6d+ 7) − 1. We consider the latter class, since it is the best possible concerning (55).

Proposition 15 —

(a) (Realizable) Let Y ′
d be the minimal resolution of Xd ⊂ P3 which is a cyclic cover of P2 of degree d

branched along d lines in general position. Then

h0(Y ′
d , S

4Ω1
Y ′

d
) > 0, ∀d ≥ 30

while no symmetric differentials of degrees 2, 3 on Y ′
d for all d ≥ 5 are guaranteed by (55).

(b) (Theoretically not excluded) Let Y ′′
d be the minimal resolution of Xd ⊂ P3 an hypersurface with a

single singularity of type A 1
3 d(2d2−6d+7)−1. Then

h0(Y ′′
d , S

2Ω1
Y ′′

d
) > 0, ∀d ≥ 16

Proof The purpose of this result is to determine the minimal m for which the existence of symmetric differ-
entials of degree m on the surfaces of type Y ′

d and Y ′′
d are guaranteed by (55). It is enough to consider solely

m = 2, 3, 4.

It follows from the formula for ℏ0(An, m) in Theorem 1 of [41], that ℏ0(An, m) = ℏ0(An, n) for m ≥ n
and ℏ0(A2, 2) = 3, ℏ0(A3, 3) = 8 and ℏ0(A4, 4) = 18. Additionally, using Proposition 14 and h1(Ani , m) =
χ(Ani , m) − ℏ0(Ani , m), we obtain

h1(An, m) =


4n − 1, n ≥ 2 if m = 2
10n − 2, n ≥ 3 if m = 3
20n − 4, n ≥ 4 if m = 4.

(57)

(a) In this case, the right side of (55) is

χ(Y ′
d, SmΩY ′

d
) + d(d − 1)

2 h1(Ad−1, m) =


−d(d2 − 1)

2 , if m = 2
− d3

3 − 7d2 + 52d
3 , if m = 3

5d3 − 162d2 + 367d

6 , if m = 4.

(58)

For m = 2, 3: the right side of (55) is < 0 for all d ≥ 5, while for m = 4 it is positive for d ≥ 30.

(b) In this case, the right side of (55) for m=2 is

χ(Y ′′
d , S2ΩY ′′

d
) + h1(A 1

3 d(2d2−6d+7)−1, 2) = 1
6

(
d3 − 18d2 + 41d − 32

)
. (59)

It is positive for d ≥ 16. □

4.2 Cyclic covers of P2 branched over line arrangements
We consider the minimal resolutions Yn,d of cyclic covers Xn,d of degree n of P2 branched along d
lines in general position, d = νn (note that the Xd of the previous sub-section are now denoted by
Xd,d). The surfaces Xn,d have d(d−1)

2 An−1 singularities and Yn,d are of general type except for the
pairs (n, d) = (2, 2), (2, 4), (2, 6), (3, 3) and (4, 4).
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Proof (of Theorem 5) To facilitate the reader we express the pairs (n, ν) for which the surfaces Yn,νn are not
of the general type: (2, 1), (2, 2), (2, 3), (3, 1) and (4, 1). Hence they are excluded from the table above.

The 2nd Segre number of Yn,d and the localized component Lh1
Ω(Yn,d), by Lemma 4, satisfy

s2(Yn,d) =
( 1

n
− 1

)
d2 − 3(n − 1)d + 6n

1
6

d(d − 1)
2

(
n − 1 − 1

37

)
< Lh1

Ω(Yn,d) <
1
6

d(d − 1)
2 (n − 1)

The CMS criterion gives that Yℓ,d has big cotangent bundle if

d(d − 1)
2

(
n − 1 − 6

37

)
≥

(
1 − 1

n

)
ℓ2 + 3(n − 1)d − 6n

and only if
d(d − 1)

2 (n − 1) >
(

1 − 1
n

)
d2 + 3(n − 1)d − 6n.

The table follows from the above. Note that the CMS-criterion will never hold on double covers (n =
2). □

Remark 6 To compare with Theorem 15 [19] that uses the RR-criterion, we give the table in a form to
make clear the difference of the pairs excluded with both criteria.

Table 3: A comparison of the CMS and RR criteria for the pairs
(n, ν) for which Ω1

Yn,νn
is not big

n 2 3 4 5 6 7 8 9 ≤ n ≤ 14
CMS ν ≥ 1 ≤ 7 ≤ 3 1 1 1
RR ν ≥ 1 ≥ 1 ≤ 12 ≤ 6 ≤ 3 ≤ 2 ≤ 2 1

The striking difference lies in the case of covers of degree n = 3 for which the CMS-criterion includes
infinitely more pairs with big cotangent bundle. The case of ν = 1 and concerning resolutions of hypersurfaces
in P3 of degree n is also striking since one has the improvement from n ≤ 14 to n ≤ 7.
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